Practical and reliable FRET/FLIM pair of fluorescent proteins
نویسندگان
چکیده
BACKGROUND In spite of a great number of monomeric fluorescent proteins developed in the recent years, the reported fluorescent protein-based FRET pairs are still characterized by a number of disadvantageous features, complicating their use as reporters in cell biology and for high-throughput cell-based screenings. RESULTS Here we screened some of the recently developed monomeric protein pairs to find the optimal combination, which would provide high dynamic range FRET changes, along with high pH- and photo-stability, fast maturation and bright fluorescence, and reliable detection in any fluorescent imaging system. Among generated FRET pairs, we have selected TagGFP-TagRFP, combining all the mentioned desirable characteristics. On the basis of this highly efficient FRET pair, we have generated a bright, high contrast, pH- and photo-stable apoptosis reporter, named CaspeR3 (Caspase 3 Reporter). CONCLUSION The combined advantages suggest that the TagGFP-TagRFP is one of the most efficient green/red couples available to date for FRET/FLIM analyses to monitor interaction of proteins of interest in living cells and to generate FRET-based sensors for various applications. CaspeR3 provides reliable detection of apoptosis, and should become a popular tool both for cell biology studies and high throughput screening assays.
منابع مشابه
Accepting from the best donor; analysis of long-lifetime donor fluorescent protein pairings to optimise dynamic FLIM-based FRET experiments
FRET biosensors have proven very useful tools for studying the activation of specific signalling pathways in living cells. Most biosensors designed to date have been predicated on fluorescent protein pairs that were identified by, and for use in, intensity based measurements, however fluorescence lifetime provides a more reliable measurement of FRET. Both the technology and fluorescent proteins...
متن کاملSingle Cell FRET Analysis for the Identification of Optimal FRET-Pairs in Bacillus subtilis Using a Prototype MEM-FLIM System
Protein-protein interactions can be studied in vitro, e.g. with bacterial or yeast two-hybrid systems or surface plasmon resonance. In contrast to in vitro techniques, in vivo studies of protein-protein interactions allow examination of spatial and temporal behavior of such interactions in their native environment. One approach to study protein-protein interactions in vivo is via Förster Resona...
متن کاملUvA - DARE ( Digital Academic Repository ) Practical and reliable FRET / FLIM pair of fluorescent proteins
Background: In spite of a great number of monomeric fluorescent proteins developed in the recent years, the reported fluorescent protein-based FRET pairs are still characterized by a number of disadvantageous features, complicating their use as reporters in cell biology and for highthroughput cell-based screenings. Results: Here we screened some of the recently developed monomeric protein pairs...
متن کاملMultiphoton-FLIM quantification of the EGFP-mRFP1 FRET pair for localization of membrane receptor-kinase interactions.
We present an improved monomeric form of the red fluorescent protein, mRFP1, as the acceptor in biological fluorescence resonance energy transfer (FRET) experiments using the enhanced green fluorescent protein as donor. We find particular advantage in using this fluorophore pair for quantitative measurements of FRET using multiphoton fluorescence lifetime imaging microscopy (FLIM). The techniqu...
متن کاملSensitive Detection of p65 Homodimers Using Red-Shifted and Fluorescent Protein-Based FRET Couples
BACKGROUND Fluorescence Resonance Energy Transfer (FRET) between the green fluorescent protein (GFP) variants CFP and YFP is widely used for the detection of protein-protein interactions. Nowadays, several monomeric red-shifted fluorescent proteins are available that potentially improve the efficiency of FRET. METHODOLOGY/PRINCIPAL FINDINGS To allow side-by-side comparison of several fluoresc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- BMC Biotechnology
دوره 9 شماره
صفحات -
تاریخ انتشار 2009